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Optical gap solitons via second-harmonic generation: Exact solitary solutions
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We report exact stationary localized solutions of the coupled-mode equations which describe two-color
trapping through the interplay ¢&ither single or doub)eBragg coupling and second-harmonic generation. We
check numerically their stability against small perturbations.
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Resonant three-wave interactionswsE w;+ w,) or Let us consider a two-color field
second-harmonic generatié8HG, w,= w,) as a degenerate E(z,t) =Em=l,2E;(z,t)eprkmz—imwot)+Er;(z,t) exp(—ikmz
case are widespread in physics. In homogeneous media soli-imegt) with fundamentaklFF, wo), and SH (2v,) carrier
ton propagation in the presence of first-order dispersion waequencies. Here the- (—) indicates forward(backward
investigated nearly two decades aldg2]. Conversely, the propagation in a material withy!® nonlinearity and
possibility of sustaining solitary waves through the interplayz-periodic variation of the linear susceptibility with period
of second-order disperSiOfDr diffraction) and parametric A:fn-/ﬁo_ In the rotating_wave and quasisca|ar approxima_

conversion has motivated recent efforts in opis-11.  {jons the coupled-mode equations which govern the envelope
Parametric solitons spatially confined in o, or two [5] propagation can be casted in the dimensionless fdh
transverse dimensions have been observed in uniform media.

On the other hand, it is well known that localization phe-

nomena occur also in periodic nonlinear media at both clas- _iaE Nk — * *
sical[12], and quantum levelsl3]. A fascinating example in e L e
optics is the gap or self-transparency solitons arising from +u1xl¢f+¢§(¢f)*,
mutual compensation of Bragg grating dispersion and Kerr (1)
nonlinearities. Evidence of the formation of a slow gap soli-
ton has been recently reported in a glass fiber fjlidi. _iaE E\kT i + +
It stems from the well established notion of quadratic soli- b2, =LOHI8(62)7] = =lva ot Aads
tons and Bragg localization to investigate the existence of +vok005 + [(h1)%2],

parametric(i.e., quadratit gap solitons in periodic media

with ¥ nonlinearities(see, e.g., Ref§15-17). The prob-

lem appears rather challenging due to the large number afthere é£&=I"yz and 7=I";V4t are normalized distance and
involved wave envelopes: four in the simplest case of SHGtime, respectivelyl, andV;1=(9k/r9w|mwo (m=1,2) being

ll\leve]rcthetlre]ssf, SH? in af ctivc\)/ublylresonant Il_3tragg gr:gtri]ng alihe grating coupling strengths and the inverse group veloci-
ows for the formation of two-color gap solitons which are o "o o1 elone amplitudes ar’ —c E= ex +i(k,

purely parametric in naturéot relying on any equivalent ~

cubic nonlinearity [18,19. These soliton envelopes are —m@o)z_], where c;= \/2V2X1X2/9/1F1)' ca=x1/T'y,
reminiscent of parametric solitons in uniform media with |[Eml” gives the intensity ang[W~*?] are usual nonlinear
second-order dispersidiie., they obey equations of identi- coefflments[ls]. The field evolution depends on four nor-
cal form). However, this perturbative result is valid only Malized parameters: the SH to FF ratios of coupling
when both carriers are in the vicinity of the edges of theStrengthsk,=I'5/I';, and group velocity,=V,/V,, and
linear stop gaps associated with the Bragg resonances. CoRf and SH detunings from Bragg resonanggs=Vm(kn
versely, in order to assess the experimental feasibility of- MBo)/(V1I'1). We also introduce ;=«;=1 to simplify
parametric gap solitons, it is important to describe analytithe notation. The SHG wave vector mismatch, which does
cally localized solutions which span the entire gaps. Thos&0t explicitly appear in Egs(l), is given in terms of the
solutions reported to date are not of true parametric origin irfletunings A; , as Ak=k,—2k;=I';[(V14,/V;) —2A,].

the sense that they require the propagation effects at SH to B¥otice that, although Eqs1) describe a doubly resonant
negligible, causing SHG to give rise to cubic equivalentBragg gratinglor an anharmonic grating, the SH being reso-
terms[17,20.. In Bragg gratings this implies a proper engi- nant with the grating SH in the important case of a single
neering in order to induce a strong Bragg resonance at SBragg resonance at Ff.e., nearly harmonic gratingl’,
[20]. In this paper we show that more general stationary=0) they hold valid withx,—0, the other definitions re-
solutions can be explicitly obtained. They are experimentallymaining unchanged.

accessible being robust under the action of perturbations, and Since Eqgs(1) are invariant with respect to tempofa or

valid also in the particular case of vanishing Bragg couplingspace  (§)  translations, ~ and  phase  scaling
at SH, namely in singly resonant gratings for which the tech<by,— ¢, €xpimyy), they conserve the Hamiltoniatd
nology is well developed12,15. =[T*Hd& where
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) I P depend on the choice of the two phaggs,, which also fix
ZH:mZElZ Wm[ Pm(Pme)™ — bm(bme) ™ ] Y. We single out two cases which yield real values for
' both the linear and the nonlinear terntg} ¢;;=c,=cn =
+2A 124 1212+ 20 kb (HT)E =1, ¢cp=1 (e, y=vn=m, $2=0); (b) c1=Cj2=Cy,
i &l ™| bl + 20 mim b fim) =c¥=1(i.e., Y11= .= ¢¥y=0). In the following we deal
F (I (T4 (b)) * (bT)2+c.c. with case(a): all the results can be extended to cdbg
(62)7(81)"+(8,)7(41) through the substitutionss;,d,,x5,6— —61,— 62, — K>,
as well as the energyor mas$ N=[23 . m(|¢ ]2  —& Itisuseful to write Egs(5) as a canonical Hamiltonian
+|¢-|2)d¢ and the momentum ' system with two degrees of freedom, by posig=x;;

+iX4i 5 and separating the equations in real and immaginary
parts. We obtain

+ o
M=i J | 2 dn(bn* + dn(dng* —coldE
’ X1r = = (N1 9Xqi) = = (814 1)Xqj + Xq Xoi = XorX1i (6)
Furthermore, the energy and its flux are related by the equa-
tion X1j =+ (1 9X1) = (81— 1) X1 — X1 Xor — X1 Xy, (7)

a1 [P+ b1 12+ 2] 5 |2+ 2|95 12)
= —dg(val 1 [P—val @1 [P+ 20,/ 5 |2 =20,/ 5 |?).

We seek standing-wave localized solutions of E@3.

dm(E,7)=\vws_mun(€)expimh7), m=1,2; (2)

Xor=— (9Nl Xgi) = (Kp— 82)Xai + X1, X1 (8)
Xoi =+ (91 9Xg) = (kp+ 82)%g — 3 (X5 —XZ), 9)

where the Hamiltonian

L . . Xar . 2 2 (6—1) ,
which is equivalent to solve the variational problestH ==Xy XqiXai = 5~ (Xgr = Xp) + —5— Xy,
+AN)=0. The envelopeﬂf2 obey the following system of
ordinary differential equation€ODES (61+1) , (92t k2) , (62—k2) ,

+ X5 X X2 .

. N N _ . . 2 1i 2 2r 2 2i

Fiug=[dHo/a(uy)*] =6uy +ug +(up)*uy, 3

- . N - - The ODEYEQs.(6)—(9)] need an additional conserved quan-
Fiug=[dHo/d(uz)" ] = Uy + kouy +[(U1)2], (4 ity to be integrable. Although its existence is not supported
by physical arguments in the general case, the following re-

with 5, =(A,—mMA)/v,,. At low power, Egs.(3) and (4) lation can be easily verified:

decouple and the linear solutions, at frequencym(wq
—\) shows the existence of two distinct forbidden gaps (d/d€) p=2Xi[ (ky— 85) + 2KXx ], (10)
(where the waves are exponentially decaying inside the grat-

ing) for | 5| <k, with m=1,2[18]. Equations(3) and(4)  with p=x3,+ x5, + (x5, +x%;)/2+ 2X,, . We therefore distin-
preserve the translational and phase invariance and conserygish two integrable cases of intere@tl) x,=0; (c2) &,

the Hamiltonian =68,=0, in which p represents the additional conserved
guantity. Note that, in both cas¢&l) and (c2)] we solved
Ho= z i(|uﬂ-|2+|u_—|2)+u—u+* the quadratic systerfEqs. (6)—(9)] retaining the¢ deriva-
0, 20T J 17 tives of the SH field. In other words our solutions are such

T SRR NP that the SHis not adiabatically followingthe FF. Let us
+ra(Up Uy ™)+ 5[ (ug)"(Uz )™ +(up)™(uz )™ ] +e.c. consider first the cagel) x,;=0, corresponding to a real SH
envelope x,. In this case, EQ.(9) yields x2r=(x§r

and the photon fluxQy=|u;y |?—|u; |?+2|us |?=2Juy 2.~ 2 : . , r
Since stationary solutions have vanishing flux, it is reason- X1)/[2(d2 x2) ] which, to be compatible with Eqs6)

able to look for spatially localized solutions of Eq8) and (8), requires in turn theesonancecondition
(4) in the form ujf i X1 &) and uy ,=cy X§ £), with 28+ 8+ K,=0, (11)
c1.=|ciJexplyi,) complex constants. This allows one to
reduce Eqgs(3) and(4) to two ODEs, and since compatibility which can be satisfied by properly tunigy and &, for a
requires|c; |°=|cy|? and |c{ |*=|c; |, we take|ciJ=1  given value ofx,, and in particular also for the single Bragg
without loss of generality. From Eqé3) and (4), we obtain  coupling k,=0. By eliminatingx,, in Eqgs.(6) and(7) and
the systentthe dot stands fos/J¢) introducing the variables, ;=x;, 1,/2\]8;] we obtain the
] self-consistent system

iXq 4 01X+ C11XT +CpiXoXi =0, . .

_ © X == (dhy/x;);  X;=(dhy/dX;), (12

iX2+ 62X2+ K2C|2X§ + C:|X2/2: 0,

where the one degree of freedom Hamiltonian is

where ¢y jzn1=exp(tivizn) With ¢i12=t1,~ ¢, and
Ym= 11— ho2. The values of the coefficients in Ed$) hy= (81— 1)XZ12+ (1+ 81)X7 12+ (14) (x{ + X! = 2xPX7),
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_X4)/(X1_X3). In the ||m|t X]_:XZZO, X3:2(51_1), X4 =
(b) —2(8y+1), thené,—=. Hence Eq(15) yields the standing
ol solitary wave

2(62-1)
1+ 6, cosi2\1-8%¢)’

Xi

Xor (€)= (16)

=]

}@ which exists f0r5i< 1, i.e., inside the stop-gap associated
with the Bragg resonance at FF. From Etf) and Eqs(13),
we obtain the corresponding FF field intensity

81+ cosh21— 6%¢)
[1+ 8,c0sH2\1— 67¢)]2

FF intensity

|x1(£)[2=88,(1- &%)

4 0 14 8 25 -1 o 1 25
distance & Xr and phase
FIG. 1. Soliton FF intensity profiles fors;=0.9 (doty; §,=0.5 = 1 — _ 5
(dot-dashe)s(?‘a‘)lzo.l (solid), (b) cosr/reF;ponding sleparatr(icesgin tlhe phase argxl) tan [\/(1 51)/(1+ 51)tanh( \/l 515)]'
plane & .x;). These FF intensity profiles are shown in Figa)l for 0.5
<|81/<1 they exhibit a single hump. As the gap edges
|8,/]=1 are approached, the peak intensity; 8 — 67)/(1
+6,) decreases and the width €157)~*2 increases. For
|6,]<0.5 the solitary envelopes are double-humped, corre-
sponding to separatrices of Eq42) with characteristic but-

&

and y=sign(d,). System(12) depends only ord;, and the
invarianced; — — d1,X, j— X; , permits one to restrict to val-
ues ;>0 (y=1). The origin §,,x;)=(0,0) is the only
fixed point in Eqs(12). Therefore, the solitary solutions are
expected to be bright-bright wavés;, =X;;=X,,=0 at in- .
finity), which correspond to the invariapt=0. To construct terfly shapegsee F'g' lb)%- . i luti
the localized solutions explicitly, it is more convenient to . Let us now consider the standing solitary wave solutions

exploit the conservation gb and the solution of Eq(9) to |n.the other mtegrgble limitc2), namgl_y for 8,= x,=0. '!"
. this case the grating shows a negligible Bragg coupling at
express;, andxy; in terms ofx,, as

SH and satisfies the resonance conditibk+AB=0 (or

Xir: _Xgr_z(lJr 81)Xor + P k,—Kk;=Bp), that can be easily fqlfilled at phase_—m_atching
(13)  and perfect Bragg resonance. Using Ed€), we eliminate
X3,= = X3, —2(1— 81)Xor + . Ez:an\;ir:iblexzf and obtain the following self-consistent sys-
1r,1i

It follows from Eq.(8) a decoupled equation for the equiva- o= — (3U19%) . Xy=— (9Uld%y) 17
lent particle coordinatex,,, in the potential formx,, = e SRS Hso
— dVIdxy, , WhereV=V(xy,) is the quartic well whereU = (x7,+ X7, + 2x2, x2.) /14— g?(x3, + x3,) 12 is a poten-
tial well, and q?=1- 8>+ p. Equations(17) are formally
__1yA _oy3 _ . _ 2 ) 1
V== 3 X5 =25 —[2(1- 8) —pIx3+2PXer . (19 {gentical to the ODES from the focusing Manakov system of
. ) . ) _.._coupled nonlinear Schdinger equationg21], which de-
For p=0, this equivalent particle model yields the periodic g jhes the evolution of a two component envelope soliton
localized solution(so-called snoidal waye (for instance in fibers with random birefringencé&he soli-
~ X3— X4A ST a£|K) tfry solution of Egs. (17) IS Xy=Xg+ixy
Xor (&) = 1-A s(adlk) (15 =v2q sech@)exp(y), whereyy, is an arbitrary phase. The
si(ag]k) SH component can be easily obtained by solving the coupled
equations

where  @=2[(X;—X3)(Xo—X5)] Y2 A=(X—X3)/(X;
—X,), andx;>X,>X3>X, are the roots of the polynomial Xor=XqiX1r;  Xoi =3 (X5, —X3,), (18)
2[E=V(X)]=(Xx—%X1)(X—X5) (Xx—X3)(Xx—X4), E being a

constant with the meaning of particle total energy. The peand it turns out to be a dark envelopg =Xy, +ixXy =

riod of the solution(15) is &,=4K(k)/a with k?=A(X; —i tanh@&exp(2i¢yp). We conclude that in this case the two-
60 60 b
50 50 ( )
e 40 40 FIG. 2. Spatiotemporal evolution of the K& and
g 30 30 SH (b) intensity from a spatially perturbed localized
g= P “1 20 soliton, on perfect resonand®(\=0)=0. Here «,
=0 (single Bragg resonange §,=A;=0.8, &,
10 =~ 10 =A,/0.5=-28,=—186.
-20 -10 10 20 -80 -10 0 20

0 0 1
distance & distance &
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o 1
= (b)
=
> g
g = 05 FIG. 3. Temporal evolution for a soliton with a
8 0 % deviation of 20% from resonance, i.€(A=0)=0.2:
= 0 o (a) FF intensity;(b) FF (solid) and SH(dashedl phase
i S s o ~ at peak intensity. Heres;=A;=0.8, k,=0.5, v,
E: 0 Q - =V, IV~ wol2wy=0.5.
g 2 -
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color soliton is a bright-dark pair, thereby requiring stronginside the grating is allowed. In the case of one-hump soli-
SH excitation at both grating boundaries. tons, i.e., for 0.5|68;|<1, the behavior shown in Fig. 2
Finally, let us address the important problem of stabilitypersists for even stronger perturbatiofup to 50% of the
of the bright gap soliton§16). Since a general stability cri- soliton energy. Conversely, the solitary waves with double
terium has not even been developed in the simpler case ®fak at FF (82| 5,/<0.5) are more sensitive and easily de-
gap solitons of Kerr materiale.qg., fiberd12]), we resort to ~ Stroyed by relatively strong perturbations.
numerically integrate Eq€1), studying the temporal evolu- !N the second set of numerical tests we chose the param-
tion of the localized profiles in the presence of a perturba€ters so tha®(A=0)+0, using an initial profile matching
tion. To this extent we introduce the quantity the solitary solution(16) for the chosen values; . In this N
case we expect the robustness to induce the soliton acquiring
O(N)=28,+ 8+ ky=2A1+ Aplvy +Kky—2N[1+(1/v5)], a frequency shifin#0 such that® (A #0)=0. For single-
humped solitons (05| 8,|<1) this is confirmed by our nu-
which quantify the deviation from the resonance condition ofmerical results(see the example in Fig.)3As shown, the
the casegcl): for any given frequency shift, the resonance spatial profile of the soliton exhibits weak oscillations
condition (11) is fulfiled for ®(\)=0. We performed two around an average solution with a temporal slope of the
distinct sets of numerical experiments: in the first we chos@hase due to a #0. Again, the double-humped solutions
A;,, Ky, ando, to satisfy the resonand@(\=0)=0. In this (|64/<0.5) are more sensitive to the resonance condition,
case, if the initial profile matches exactly the bound solutionb€ing easily destroyed by deviatiofisof a few percent.
(16), we observe time-independent evolutions. We assessed In conclusion we have reported exact solutions describing
the robustness of gap solitons by adding a spatial perturb&tanding self-transparency or gap parametric solitary waves,
tion (we considered both odd and even perturbations and which appear to be accessible with the state of the art tech-
wide range of parameter valyes typical result is shown in nology of Bragg gratings in standayd? materials for SHG
Fig. 2 for a single Bragg resonance at Fk,€0) and an  [15]. For instance, a soliton trapped over a distagee$,
even perturbation with Gaussian shape and about 30% of thie I';L =10 (a sample. =2 cm long with a coupling strength
soliton energy component at FF. After a transient duringl;=5cm%), requires a peak intensity |E,|?
which energy is emitted in the form of radiatiafinear =(F1/2X1)2X;11(§=0) less than 1 GW/chfor typical nonlin-
waves, the stationary wave pair induces self-transparencyear coefficientgy;~ y,~5x 10 * W~ Y2[4,5]. Less intense
and remains trapped in stable fashion. In Fig. 2 the emissioand wider solitons require strongdéor longe) gratings.
of linear waves is stronger at SH because it experiences né/ave guides seem suitable candidates to overcome diffrac-
linear Bragg effect, and the low-power propagation at SHtion effects over the characteristic localization lendthd4].
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