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Optical gap solitons via second-harmonic generation: Exact solitary solutions
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We report exact stationary localized solutions of the coupled-mode equations which describe two-color
trapping through the interplay of~either single or double! Bragg coupling and second-harmonic generation. We
check numerically their stability against small perturbations.
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Resonant three-wave interactions (v35v11v2) or
second-harmonic generation~SHG,v15v2! as a degenerat
case are widespread in physics. In homogeneous media
ton propagation in the presence of first-order dispersion
investigated nearly two decades ago@1,2#. Conversely, the
possibility of sustaining solitary waves through the interp
of second-order dispersion~or diffraction! and parametric
conversion has motivated recent efforts in optics@3–11#.
Parametric solitons spatially confined in one@4#, or two @5#
transverse dimensions have been observed in uniform me

On the other hand, it is well known that localization ph
nomena occur also in periodic nonlinear media at both c
sical@12#, and quantum levels@13#. A fascinating example in
optics is the gap or self-transparency solitons arising fr
mutual compensation of Bragg grating dispersion and K
nonlinearities. Evidence of the formation of a slow gap so
ton has been recently reported in a glass fiber filter@14#.

It stems from the well established notion of quadratic so
tons and Bragg localization to investigate the existence
parametric~i.e., quadratic! gap solitons in periodic media
with x (2) nonlinearities~see, e.g., Refs.@15–17#!. The prob-
lem appears rather challenging due to the large numbe
involved wave envelopes: four in the simplest case of SH
Nevertheless, SHG in a doubly resonant Bragg grating
lows for the formation of two-color gap solitons which a
purely parametric in nature~not relying on any equivalen
cubic nonlinearity! @18,19#. These soliton envelopes ar
reminiscent of parametric solitons in uniform media w
second-order dispersion~i.e., they obey equations of ident
cal form!. However, this perturbative result is valid on
when both carriers are in the vicinity of the edges of t
linear stop gaps associated with the Bragg resonances.
versely, in order to assess the experimental feasibility
parametric gap solitons, it is important to describe anal
cally localized solutions which span the entire gaps. Th
solutions reported to date are not of true parametric origin
the sense that they require the propagation effects at SH t
negligible, causing SHG to give rise to cubic equivale
terms@17,20#. In Bragg gratings this implies a proper eng
neering in order to induce a strong Bragg resonance at
@20#. In this paper we show that more general station
solutions can be explicitly obtained. They are experimenta
accessible being robust under the action of perturbations,
valid also in the particular case of vanishing Bragg coupl
at SH, namely in singly resonant gratings for which the te
nology is well developed@12,15#.
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Let us consider a two-color field
E(z,t)5(m51,2Em

1(z,t)exp(ikmz2imv0t)1Em
2(z,t)exp(2ikmz

2imv0t) with fundamental~FF, v0!, and SH (2v0) carrier
frequencies. Here the1 ~2! indicates forward~backward!
propagation in a material withx (2) nonlinearity and
z-periodic variation of the linear susceptibility with perio
L5p/b0 . In the rotating-wave and quasiscalar approxim
tions the coupled-mode equations which govern the enve
propagation can be casted in the dimensionless form@18#

2 if1t
6 5@dH/d~f1

6!* # 56 iv1f1j
6 1D1f1

6

1v1k1f1
71f2

6~f1
6!* ,

~1!

2 if2t
6 5@dH/d~f2

6!* # 56 iv2f2j
6 1D2f2

6

1v2k2f2
71 @~f1

6!2/2# ,

where j[G1z and t[G1V1t are normalized distance an
time, respectively,Gm andVm

215]k/]vumv0
(m51,2) being

the grating coupling strengths and the inverse group vel
ties. The envelope amplitudes arefm

65cmEm
6 exp@6i(km

2mb0)z#, where c15A2V2x1x2 /(V1G1
2), c25x1 /G1 ,

uEmu2 gives the intensity andxm@W21/2# are usual nonlinear
coefficients@18#. The field evolution depends on four no
malized parameters: the SH to FF ratios of coupli
strengthsk25G2 /G1 , and group velocityv25V2 /V1 , and
FF and SH detunings from Bragg resonancesDm[Vm(km
2mb0)/(V1G1). We also introducev15k151 to simplify
the notation. The SHG wave vector mismatch, which do
not explicitly appear in Eqs.~1!, is given in terms of the
detunings D1,2 as Dk[k222k15G1@(V1D2 /V2)22D1#.
Notice that, although Eqs.~1! describe a doubly resonan
Bragg grating~or an anharmonic grating, the SH being res
nant with the grating SH!, in the important case of a singl
Bragg resonance at FF~i.e., nearly harmonic grating,G2
50! they hold valid withk2→0, the other definitions re-
maining unchanged.

Since Eqs.~1! are invariant with respect to temporal~t! or
space ~j! translations, and phase scalin
fm

6→fm
6 exp(imc0), they conserve the HamiltonianH

5*2`
1`Hdj where
R1251 © 1998 The American Physical Society
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2H5 (
m51,2

ivm@fm
2~fmj

2 !* 2fm
1~fmj

1 !* #

12Dm~ ufm
1u21ufm

2u2!12vmkmfm
2~fm

1!*

1~f2
1!* ~f1

1!21~f2
2!* ~f1

2!21c.c.

as well as the energy~or mass! N5*2`
1`(m51,2m(ufm

1u2

1ufm
2u2)dj and the momentum

M5 i E
2`

1`F (
m51,2

fm
1~fmj

1 !* 1fm
2~fmj

2 !* 2c.c.Gdj.

Furthermore, the energy and its flux are related by the eq
tion

]t~ uf1
1u21uf1

2u212uf2
1u212uf2

2u2!

52]j~v1uf1
1u22v1uf1

2u212v2uf2
1u222v2uf2

2u2!.

We seek standing-wave localized solutions of Eqs.~1!,

fm
6~j,t!5Av1v32mum

6~j!exp~ imlt!, m51,2; ~2!

which is equivalent to solve the variational problemd(H
1lN)50. The envelopesu1,2

6 obey the following system o
ordinary differential equations~ODEs!

7 iu1j
6 5@]H0/]~u1

6!* # 5d1u1
61u1

71~u1
6!* u2

6 , ~3!

7 iu2j
6 5@]H0/]~u2

6!* # 5d2u2
61k2u2

71@~u1
6!2/2# , ~4!

with dm[(Dm2ml)/vm . At low power, Eqs.~3! and ~4!
decouple and the linear solutionsum

6 at frequencym(v0

2l) shows the existence of two distinct forbidden ga
~where the waves are exponentially decaying inside the g
ing! for udmu,km , with m51,2 @18#. Equations~3! and ~4!
preserve the translational and phase invariance and cons
the Hamiltonian

H05 (
j 51,2

d j

2
~ uuj

1u21uuj
2u2!1u1

2u1
1*

1k2~u2
2u2

1* !1 1
2 @~u1

1!2~u2
1!* 1~u1

2!2~u2
2!* #1c.c.

and the photon fluxQ05uu1
1u22uu1

2u212uu2
1u222uu2

2u2.
Since stationary solutions have vanishing flux, it is reas
able to look for spatially localized solutions of Eqs.~3! and
~4! in the form u1,2

1 5c1,2
1 x1,2(j) and u1,2

2 5c1,2
2 x1,2* (j), with

c1,2
6 5uc1,2

6 uexp(ic1,2
6 ) complex constants. This allows one

reduce Eqs.~3! and~4! to two ODEs, and since compatibilit
requiresuc1

1u25uc1
2u2 and uc1

1u25uc1
2u2, we take uc1,2

6 u51
without loss of generality. From Eqs.~3! and ~4!, we obtain
the system~the dot stands for]/]j!

i ẋ11d1x11cl1x1* 1cnlx2x1* 50,
~5!

i ẋ21d2x21k2cl2x2* 1cnl* x2/250,

where cl1,l2,nl[exp(icl1,l2,nl) with c l1,l2[c1,2
2 2c1,2

1 and
cnl5c l12c l2/2. The values of the coefficients in Eqs.~5!
a-

s
t-

rve

-

depend on the choice of the two phasesc l1,l2 which also fix
cnl . We single out two cases which yield real values f
both the linear and the nonlinear terms:~a! cl15cnl5cnl* 5
21, cl251 ~i.e., c l15cnl5p, c l250!; ~b! cl15cl25cnl

5cnl* 51 ~i.e., c l15c l25cnl50!. In the following we deal
with case~a!: all the results can be extended to case~b!
through the substitutionsd1 ,d2 ,k2 ,j→2d1 ,2d2 ,2k2 ,
2j. It is useful to write Eqs.~5! as a canonical Hamiltonian
system with two degrees of freedom, by posingx1,2[x1r ,2r
1 ix1i ,2i and separating the equations in real and immagin
parts. We obtain

ẋ1r52 ~]h/]x1i ! 52~d111!x1i1x1rx2i2x2rx1i , ~6!

ẋ1i51 ~]h/]x1r ! 5~d121!x1r2x1rx2r2x1ix2i , ~7!

ẋ2r52 ~]h/]x2i ! 5~k22d2!x2i1x1rx1i , ~8!

ẋ2i51 ~]h/]x2r ! 5~k21d2!x2r2
1
2 ~x1r

2 2x1i
2 !, ~9!

where the Hamiltonian

h52x1rx1ix2i2
x2r

2
~x1r

2 2x1i
2 !1

~d121!

2
x1r

2

1
~d111!

2
x1i

2 1
~d21k2!

2
x2r

2 1
~d22k2!

2
x2i

2 .

The ODEs@Eqs.~6!–~9!# need an additional conserved qua
tity to be integrable. Although its existence is not suppor
by physical arguments in the general case, the following
lation can be easily verified:

~d/dj! p52x2i@~k22d2!12k2x2r #, ~10!

with p[x2r
2 1x2i

2 1(x1r
2 1x1i

2 )/212x2r . We therefore distin-
guish two integrable cases of interest:~c1! x2i50; ~c2! k2
5d250, in which p represents the additional conserv
quantity. Note that, in both cases@~c1! and ~c2!# we solved
the quadratic system@Eqs. ~6!–~9!# retaining thej deriva-
tives of the SH field. In other words our solutions are su
that the SHis not adiabatically followingthe FF. Let us
consider first the case~c1! x2i50, corresponding to a real SH
envelope x2 . In this case, Eq. ~9! yields x2r5(x1r

2

2x1i
2 )/@2(d21k2)# which, to be compatible with Eqs.~6!–

~8!, requires in turn theresonancecondition

2d11d21k250, ~11!

which can be satisfied by properly tuningd1 and d2 for a
given value ofk2 , and in particular also for the single Brag
coupling k250. By eliminatingx2r in Eqs. ~6! and ~7! and
introducing the variablesxr ,i[x1r ,1i /2Aud1u we obtain the
self-consistent system

ẋr52 ~]h1/]xi ! ; ẋi5~]h1/]xr ! , ~12!

where the one degree of freedom Hamiltonian is

h15~d121!xr
2/21~11d1!xi

2/21~g/4!~xr
41xi

422xr
2xi

2!,
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andg[sign(d1). System~12! depends only ond1 , and the
invarianced1→2d1 ,xr ,i→xi ,r permits one to restrict to val
ues d1.0 (g51). The origin (xr ,xi)5(0,0) is the only
fixed point in Eqs.~12!. Therefore, the solitary solutions ar
expected to be bright-bright waves~x1r5x1i5x2r50 at in-
finity!, which correspond to the invariantp50. To construct
the localized solutions explicitly, it is more convenient
exploit the conservation ofp and the solution of Eq.~9! to
expressx1r andx1i in terms ofx2r as

x1r
2 52x2r

2 22~11d1!x2r1p;
~13!

x1i
2 52x2r

2 22~12d1!x2r1p.

It follows from Eq. ~8! a decoupled equation for the equiv
lent particle coordinatex2r , in the potential formẍ2r5
2]V/]x2r , whereV5V(x2r) is the quartic well

V52 1
2 x2r

4 22x2r
3 2@2~12d1

2!2p#x2r
2 12px2r . ~14!

For p50, this equivalent particle model yields the period
localized solution~so-called snoidal wave!

x2r~j!5
x32x4A sn2~ajuk!

12A sn2~ajuk!
, ~15!

where a52@(x12x3)(x22x4)#21/2, A5(x22x3)/(x2
2x4), andx1.x2.x3.x4 are the roots of the polynomia
2@E2V(x)#5(x2x1)(x2x2)(x2x3)(x2x4), E being a
constant with the meaning of particle total energy. The
riod of the solution~15! is jp54K(k)/a with k25A(x1

FIG. 1. ~a! Soliton FF intensity profiles ford150.9 ~dots!; d150.5
~dot-dashes!; d150.1 ~solid!, ~b! corresponding separatrices in the pha
plane (xr ,xi).
-

2x4)/(x12x3). In the limit x15x250, x352(d121), x4 5
22(d111), thenjp→`. Hence Eq.~15! yields the standing
solitary wave

x2r~j!5
2~d1

221!

11d1 cosh~2A12d1
2j!

, ~16!

which exists ford1
2,1, i.e., inside the stop-gap associat

with the Bragg resonance at FF. From Eq.~16! and Eqs.~13!,
we obtain the corresponding FF field intensity

ux1~j!u258d1~12d1
2!

d11cosh~2A12d1
2j!

@11d1cosh~2A12d1
2j!#2

and phase

arg~x1!5tan21@A~12d1!/~11d1!tanh~A12d1
2j!#.

These FF intensity profiles are shown in Fig. 1~a!: for 0.5
,ud1u,1 they exhibit a single hump. As the gap edg
ud1u51 are approached, the peak intensity 8d1(12d1

2)/(1
1d1) decreases and the width (12d1

2)21/2 increases. For
ud1u,0.5 the solitary envelopes are double-humped, co
sponding to separatrices of Eqs.~12! with characteristic but-
terfly shapes@see Fig. 1~b!#.

Let us now consider the standing solitary wave solutio
in the other integrable limit~c2!, namely ford25k250. In
this case the grating shows a negligible Bragg coupling
SH and satisfies the resonance conditionDk1Db50 ~or
k22k15b0!, that can be easily fulfilled at phase-matchin
and perfect Bragg resonance. Using Eqs.~10!, we eliminate
the variablex2r and obtain the following self-consistent sy
tem for x1r ,1i

ẍ1r52 ~]U/]x1r ! ; ẍ1i52 ~]U/]x1i ! , ~17!

whereU5(x1r
4 1x1i

4 12x1r
2 x1i

2 )/42q2(x1r
2 1x1i

2 )/2 is a poten-
tial well, and q2[12d1

21p. Equations~17! are formally
identical to the ODEs from the focusing Manakov system
coupled nonlinear Schro¨dinger equations@21#, which de-
scribes the evolution of a two component envelope soli
~for instance in fibers with random birefringence!. The soli-
tary solution of Eqs. ~17! is x15x1r1 ix1i
5&q sech(qj)exp(ic0), wherec0 is an arbitrary phase. The
SH component can be easily obtained by solving the coup
equations

ẋ2r5x1ix1r ; ẋ2i5
1
2 ~x1i

2 2x1r
2 !, ~18!

and it turns out to be a dark envelopex25x2r1 ix2i5
2 i tanh(qj)exp(i2c0). We conclude that in this case the two
d

FIG. 2. Spatiotemporal evolution of the FF~a! and

SH ~b! intensity from a spatially perturbed localize
soliton, on perfect resonanceQ(l50)50. Here k2

50 ~single Bragg resonance!, d15D150.8, d2

5D2/0.5522d1521.6.
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FIG. 3. Temporal evolution for a soliton with a
deviation of 20% from resonance, i.e.,Q(l50)50.2:
~a! FF intensity;~b! FF ~solid! and SH~dashed! phase
at peak intensity. Hered15D150.8, k250.5, v2

5V2 /V1;v0/2v050.5.
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SH excitation at both grating boundaries.

Finally, let us address the important problem of stabil
of the bright gap solitons~16!. Since a general stability cri
terium has not even been developed in the simpler cas
gap solitons of Kerr materials~e.g., fibers@12#!, we resort to
numerically integrate Eqs.~1!, studying the temporal evolu
tion of the localized profiles in the presence of a pertur
tion. To this extent we introduce the quantity

Q~l![2d11d21k252D11 D2/v2 1k222l@11~1/v2!#,

which quantify the deviation from the resonance condition
the case~c1!: for any given frequency shiftl, the resonance
condition ~11! is fulfilled for Q~l!50. We performed two
distinct sets of numerical experiments: in the first we ch
D1,2, k2 , andv2 to satisfy the resonanceQ~l50!50. In this
case, if the initial profile matches exactly the bound solut
~16!, we observe time-independent evolutions. We asse
the robustness of gap solitons by adding a spatial pertu
tion ~we considered both odd and even perturbations an
wide range of parameter values!. A typical result is shown in
Fig. 2 for a single Bragg resonance at FF (k250) and an
even perturbation with Gaussian shape and about 30% o
soliton energy component at FF. After a transient dur
which energy is emitted in the form of radiation~linear
waves!, the stationary wave pair induces self-transpare
and remains trapped in stable fashion. In Fig. 2 the emis
of linear waves is stronger at SH because it experience
linear Bragg effect, and the low-power propagation at
iz.
of

-

f

e

n
ed
a-
a

he
g

y
n

no

inside the grating is allowed. In the case of one-hump s
tons, i.e., for 0.5,ud1u,1, the behavior shown in Fig. 2
persists for even stronger perturbations~up to 50% of the
soliton energy!. Conversely, the solitary waves with doub
peak at FF (0,ud1u,0.5) are more sensitive and easily d
stroyed by relatively strong perturbations.

In the second set of numerical tests we chose the par
eters so thatQ(l50)Þ0, using an initial profile matching
the solitary solution~16! for the chosen valued1 . In this
case we expect the robustness to induce the soliton acqu
a frequency shiftlÞ0 such thatQ(lÞ0)50. For single-
humped solitons (0.5,ud1u,1) this is confirmed by our nu-
merical results~see the example in Fig. 3!. As shown, the
spatial profile of the soliton exhibits weak oscillation
around an average solution with a temporal slope of
phase due to alÞ0. Again, the double-humped solution
(ud1u,0.5) are more sensitive to the resonance conditi
being easily destroyed by deviationsQ of a few percent.

In conclusion we have reported exact solutions describ
standing self-transparency or gap parametric solitary wa
which appear to be accessible with the state of the art te
nology of Bragg gratings in standardx (2) materials for SHG
@15#. For instance, a soliton trapped over a distancej5jL
5G1L.10 ~a sampleL52 cm long with a coupling strength
G155 cm21!, requires a peak intensity uE1u2

5(G1/2x1)2x1
2(j50) less than 1 GW/cm2 for typical nonlin-

ear coefficientsx1;x2;531024 W21/2 @4,5#. Less intense
and wider solitons require stronger~or longer! gratings.
Wave guides seem suitable candidates to overcome diff
tion effects over the characteristic localization lengths@5,14#.
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